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ABSTRACT

A system of linear elastic equations recently obtained for fiber rein- :

E | forced composite materials is applied to some simple problems concerning the

transfer of load from the reinforcement to the matrix. The same equations are

j applied to surface waves propagating in the direction of the fiber reinforce-
ment. Since the defined constants occurring in the above-mentioned linear
equations for a two-constituent composite material have never been measured,
calculations cannot be performed. When the model is simplified sufficiently,
the effective constants in the description can be partially estimated from the
known elastic constants of the individual constituents in the composite. With
the reduced equations calculations are performed for surface waves propagating

both in and normal to the direction of the fiber reinforcement. The calcula-

tions indicate the existence of a high (optical type) as well as a low (acoustic
type) surface wave mode, both of which are dispersive. We believe the optical
type mode is an analytical consequence of the simplified model and does not
actually exist. The dispersion of the acoustic type surface wave mode could

provide a means of non-destructively evaluating the integrity of a fiber rein-

forced composite material.
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1. Introduction

In a recent investigationl a system of linear elastic equations for a
two-constituent composite material was obtained from a general nonlinear system
for N-constituents. The general system of nonlinear equations was obtained
from a model of the composite consisting of interpenetrating solid continua,
in which the motion of a point of the combined continuum could be finite while
the relative motion of each of the constituents was constrained to be in-
finitesimal in order that the solid composite not rupture. The aforementioned
linear equations were written in explicit detail for the isotropic and trans-
versely isotropic symmetries. The linear elastic equations for the two-

< < 4 . : . 1
constituent transversely isotropic composite obtained in the earlier work 4

form the basis of the work presented here.

In this paper the aforementioned linear equations for the transversely
isotropic composite material are applied in the analysis of some simple but
very interesting one-dimensional static load transfer problems and the propa-~

gation of straight-crested surface waves., In the two particular one-

dimensional static problems considered,axial loading is applied to the fiber
reinforcement which enters the unloaded matrix. In one case both the matrix

and reinforcement are held fixed at the supporting end, while in the other

case the reinforcement ends at some distance into the matrix. 1In both
cases the influence of gravity is included in the analysis. 1In each

instance the rate of transfer of stress from the reinforcement to the matrix

is determined in terms of the defined material coefficients of the two-

constituent composite as a byproduct of the solution of a simple system of
ordinary differential equations with constant coefficients, The treatment
of such problems within the framework of the theory of linear elasticity is

prohibitively complicated and such problems cannnt even be mathematically

defined using the ordinary strength of materials approach.
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In the case of surface wave propagation only the placement of fiber
reinforcement parallel to the free surface is considered. The formal solution
for surface wave propagation in the direction of the fiber reinforcement is
presented. However, sinceN;£e material coefficients occurring in the theory
have never been measured for any composite, a calculation cannot be performed. ﬁ
Nevertheless, if the resulting theory is reduced by making the plausible
simplifying physical assumptions, for certain cases of interest, that only
axial stress exists in the reinforcement and the entire interaction depends
only on the relative displacements of the constituents in the model, the
remaining unknown constants in the description can be partially estimated from
the known ordinary elastic constants. Then by making an additional assumption,
calculations can be performed. At this point it should be noted that when the
aforementioned simplification is made, the resulting linear equations are
identical with an earlier system due to Bedford and Stern2’3. The aforemen-
tioned partial estimation of the unknown constants in the simplified descrip-
tion is made using a procedure due to Martin, Bedford and Stern4. With the
material constants thus determined the dispersive surface wave velocity hgs
been calculated for a glass fiber reinforced phenolic resin. In this simpli-
fied theory upper (in frequency) optical type surface wave branches are found
in addition to the lower acoustic type surface wave branches. It should be
mentioned that it is felt that the upper surface wave branch that occurs in
the simplified description will not occur in the full description because in
the latter case all the independent solutions of the differential equations
that remain coupled by the boundary conditions will probably not decay with
depth, 1In each case treated the acoustic type surface wave branch turns out

to be asymptotic to the non-dispersive surface wave velocity of the matrix at

very long wavelengths. It should be noted that the theory employed and, of




course, solutions presented are valid only for wavelengths long compared to
the spacing of the fiber reinforcement in much the same manner that the theory
of elasticity is valid only for wavelengths large compared to a lattice
spacing. However, because of the behavior of the branches, we obtain and
present results considerably beyond the range of validity of the theory.
Nevertheless, we indicate the limit of validity of the theory on each branch

plotted.

2. One-Dimensional Static Problems

In this section we consider some simple but interesting one-dimensional
static problems for two-constituent transversely isotropic composite materials.
In e;ch instance the load is applied in the preferred direction of transverse
isotropy, which lies along the length of the parallel fibers, and it is
assumed that all displacement and relative displacement components transverse
to this direction are constrained to vanish and that the remaining displace-
ment variables are independent of the transverse coordinates. We consider
only problems that satisfy these criteria. Under these circumstances the

nontrivial linear constitutive equations take the form5

Ky = Kpp =883 5 ¥ 53”;,1;’ (2.1)
L e 65“3,3 + §5w3(,1;' (2.2)
=y = §5“3,3 +;’3"'3(,13) ’ (2.3)
P33 = Pg¥3 3 * f’swsf,l:)a’ (2.4)
F=- 32w3(1’ ’ (2.5)

where Xy is the preferred direction of transverse isotropy, u, is the non-

zero displacement component of the center of mass of the combined two-
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;l) is the non-zero component of the

constituent composite material and w
relative displacement of the continuum representing the matrix. We employ
Cartesian tensor notation and we have introduced the convention that a comma
followed by an index denotes partial differentiation with respect to a space
coordinate. The KiM represent the components of the stress tensor for the

combined continuum and the ﬁLM represent the relative stress tensor which is

defined by
1 2 1 2 1 2
'&LM-_-TIfM)-rTISM)’ r=p()/p(), p=p() +p()’ (2.6)
(m) (m)
where TLM and p represent the components of the stress tensor and mass

density, respectively, of each of the interpenetrating continua. The vector
field 3M is related to the volumetric force of interaction between the two
constituents by the relation

3M=LF‘:;2(1 + 1), 2.7)

12 ., : ; 2
where LFM is the volumetric force exerted by continuum 2 on continuum 1. At

this point it is to be noted that the Téﬁ) and pon) do not represent the actual
components of stress and mass density of each of the constituents in the
composite, but only represent those quantities in each of the interpenetrating
continua, which occupy the same region of space and, respectively, represent
each constituent in the model. As a consequence, if Am and Af represent the
aréas occupied by the matrix and fibers, respectively, in a typical area A

of the interpenetrating continua normal to the fiber length, we have

£ (918,

a=a"+af, oM M )

.
=p A /A,

™, = T!%)A/Am Tf = T!?)A/Af

ij ij ) ij ij ) (2. 8)

where the variables with the superscripts m and f represent the actual re-

spective quantities in the matrix and fiber reinforcement, respectively.
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The remaining nontrivial stress equations of equilibrium and relative stress

equations of equilibrium are %
o 0 e et (2.9)
Tl _
353’3 + 33 +p f3 =0 (2.10)
where
= (@) (L) (2) - (2) o) (2)
pf3 = f3 +p f3 ’ f3 = f3 f3 : (2.11)
and fgl) and féz) denote the components of body force per unit mass in the

continua representing the matrix and fiber reinforcement, respectively, which

in the case of the gravity force are the same as the body force intensities fg

in the matrix and f§ in the fiber reinforcement, both of which equal g.
The substitution of (2.2), (2.4), (2.5) and (2.11l) into (2.9) and (2.10)

yields

A ~ (L)

g8y 23 * Fg¥3 3
F o (@) ~ (1)

B6“3,33 P T AN Y (2.13)

+pg =0, (2.12)

which are the one-dimensional displacement equations of equilibrium that apply
to the one-dimensional static problems treated in this section. The solution

to (2.12) and (2.13) may be written in the form

B -ax ax
u, =~ ;2 (Ae 3+De 3) A s pgx2 +BX, +C,
3 & = 3 3
5 2c5
-ax ox
wél) =2 > +De S+vg, (2.14)
where
? 38,7665 -85, v=opb /84 (2.15)
- g%’ g5 = Fgl » PPg/ €523 5 .

and A, B, C and D are arbitrary constants, to be found by satisfying boundary

conditions in a given one-dimensional problem,
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In the first specific problem we consider,a total compressive force P is
applied to all the fibers crossing a given cross-sectional area of a combined
composite material body of height £ resting on a rigid surface, as shown in
Fig.l. Since the supporting surface is rigid, there is no displacement in

either the matrix or fibers at the support and we have

at.x. = 0., (2.16)

15 PR w(l) SHgIR S w(z) =0 3

3 3 S TE 3 2

‘ Since u, is defined as the displacement of the center of mass of a point of

k

the combined composite continuum, we have

2
p‘l)w(l) + p( )w(z) =0, (2. 2Z)
3 3
which with (2.16) enables us to write the boundary conditions
e (a1 S %
u3 =0, w3 =0, at x3 = (O, (2.18)
Since no force is applied to the matrix at X, = 4, we have
@y _ 2 -
733 o, T33 po, at Xq 2, (2.1.9)
where po = P/A and which with (2.6) and
£ =) (2)
Bwm™ Tow T Tem s kil
enables us to write
Ky ™=~ Py » .833=rp°, at x5 = L. (2. 2L)
Now, the substitution of (2.14) into (2.18) and (2.21) yields
-l ol
Yg + up_e Yg ~ np_e
o o
s TR e 200 °
l +e 1l +e
B=~ (pgl + p,)/S;, C=- (By/cc) Y9, (2.22)

where

no= (@/a,)(xr + 36/05) . (2.23)




The substitution of (2.22), with (2.23), in (2.14) yields the solution. The
substitution of (2.14),with (2.22) and (2.23), into (2.1) - (2.5) yields all
the stresses, relative stresses and interaction forces, which we do not bother

< : o s
to write. However, in the absence of g for the actual stresses T in the

33
fibers and 723 in the matrix at the support Xy = 0, we obtain
2
-p B B
W et 5 (.ﬁ._ ___1;__]
1w Y er o [r ¥ 65 e ES bS) cosh af] '
” a2
~-P B B8
£ o A [ -} ( o Iy
= £ - ol -h_ ) ———— . ’
733 1l +r Af R Cg - Ce 5) cosh ol BEuio8y

In the second specific problem,we consider fiber reinforcement entering
a matrix and terminating uniformly at a distance £ into the matrix which con-
tinues down to a rigid support at a distance b below the junction, as shown
in Fig.2. A total tensile force P is applied to all the fibers crossing a
given cross-sectional area. Since the continuum representing the matrix and
the continuum representing the fibers can neither separate from nor penetrate
into the single matrix continuum that abuts the composite at the junction,

we must have

w(l) =0

2
3 ) w; :

=0, atx, =0, (2.25)

which is consistent with (2.17). 1In addition, the displacement u, of the

center of mass of the combined composite continuum must be the same as the

displacement U, of the isotropic single matrix continuum at the junction.

3

Consequently, as kinematic boundary conditions at the junction we have

(1) =
Wy g uy = U at X, =0, (2.26)

where 03 satisfies

ar + 2w -p'g=0, (2.27)

3,33




and the non-trivial stress components in the single matrix continuum are given

by

. =7 =2\"y

)
37 13 % % 3,3° £2.28)

m m
T§3 = A"+ 2Ny,

)

In addition to the continuity of displacement at x_, = 0 we have the continuity

3

of traction, i.e.,

m
Kee # T, 8t x, =0, (2.29)
Since no force is applied to the matrix at x, = 4, we have
@)y (2) _ -
Ty3 =0, T33° =p,, atx, =1, (2.30)

which with (2.6) enables us to write the boundary conditions

K33 =P .333=- p_, at X, = Vel ©2.31)

Since the supporting surface is rigid, we have

U, =0, atx, =-b. (2.32)

Thus, the boundary conditions are (2.26), (2.29), (2.31) and (2.32}. The

solution to (2.27) may be written in the form

U, = p"g/2 A + 2u™)] x; +Ex, + F. (2.33)

Now, the substitution of (2,14) and (2.33) into (2.26), (2.29), (2.31) and

(2.32) yields vl
Yg + ”-Poe 5 VG = 2‘-Poecx‘e
A= - , D=~
1 +e 20k 1 + e2al
A e
(p.~pg4 - > p gb)b
B=_];.(p-pg1,) c=...._6.\g+ - <
’
85 o 85 km - 2Mm
L .m
(p, - PgL) (p, ~ P9t - 5 p 9gb)b
B2 i T e : i
A+ 2u Ao+ 2u

which when substituted in (2.14) and (2.33), respectively, yields the solu-

tion. The substitution of (2.14) and (2,33) with (2.34) into (2.1) - (2.5)
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and (2.28), respectively, yields all the stresses, relative stresses and
interaction forces, which we do not bother to write. However, in the absence

of g for the actual stresses Tf in the fibers and T§3 in the matrix at the

33
junction at Xy = 0, we obtain

p ~ »\2
mi o A [ 6 (“ 6 %
T S T e mals s o T ) cosh al] 2

A 5 5

P [ B
s O g [: g -1 e __Q) A ]
32 tr 8 - & Fanbe &5/ cosh aZl * sEt

Using a highly simplified model, the results of this analysis are presented
in the Appendix in terms of the known material constants of the fiber rein-

forcement and matrix and the relative geometry.

3. Surface Waves

In this sectioi.. we consider surface waves propagating along the free-
surface of a semi-infinite fiber reinforced composite material. Only the
case of straight-crested surface waves propagating in the direction of the
fiber reinforcement, which runs parallel to the free-surface, is considered
because the method of analysis is essentially the same for surface waves
propagating normal to the direction of the fiber reinforcement, or in any
other direction for that matter, and calculations based on the analysis are

not performed because the material constants are not presently known for any

two-constituent composite material. However, in the next section calculations
are performed for surface waves propagating both in and normal to the direction
of the fiber reinforcement using a highly simplified model of the material,

and it is indicated that certain of the surface waves allowed by the simplified

model will not be permitted by the more general model considered in this section.




A schematic diagram of the free-surface of the two-constituent composite
along with the associated coordinate system is shown in Fig.3. Since we
consider straight-crested surface waves propagating in the direction of the

fiber reinforcement, which is in the x,-direction, the solution functions

are independent of Xye Furthermore, an examination of the equations for the

two-constituent transversely isotropic composite with Xy the preferred
direction5 presented in Ref.,l reveals that for xz—independence u, and v,

uncouple from Uy, Wy, Uy and wy. Hence, under these circumstances u, and W,

may be taken to vanish and the non-trivial differential equations may be

written in the form

(1)

(1)
(G + 20400, 4y * 040 a3 * By + BP0 41 * 5B i

4 1 33

Nll—‘

1 1) b
s Bl L X (5 Py * P 13 = Py RSt

o \b PR b )w‘l’

* @Dy +h)w, o, 1.33

1

By + Byluy 30 * 5 Ri% an
1 1 (1) (1) & .(1)

(5 Py * B5)“3,13 £ (b3 t*h -3 b7)"’3,13 Bw, =, 8.2

1 (1)
L T T T (2 By * B5)"’1,13 T T

Eam 1 R
7 Py 3,11 * B6"’3,33 = puy , (3.3)
1 @y .3
( Py * B3)“1 13 (b N LR
(1) ¢S] S
Pets 33 * (b v b7)w3 1" " %Y Ty 3.4)

and the non-trivial boundary conditions may be written in the form

K,*K;=d, =B, =0atx =0, (3.5)

where

- (1) (1)
K= (cl+2c3)u 1t (B +B )w 1t (cl+c2)u3’3+ (Bl+B3)w3’3 3 (3.6)




11,

" = (1) (1)
| 91 w1+5£ugl+'ub1+bfwyl+(ﬁl+8§u;3+'w2+b9w%3’ 3.7
|
| 4 Loy )
Fia " €4 1*% 5l * 3 64"”3,1*"’1,3) ’ 2.9
e e 1, ),@
$1a= 7 Paty 3%93 ) +(by - 3 1 13t \Byt 3 b7>"’3,1’ 2.5}
and everything vanishes as X, 7.
As a solution of the differential equations we take
1(nx1+gx3-wt) @ 1(nxl+gx3—wt) o
ua = Aag 5 w& = Bze 5 @=1,3, (3.10)
which satisfies (3.1) - (3.4) provided
2 X
Qy; = PWIR,) +Q,0B) + Q148 + Q.83 =0,
2 _
Q1R * @y, - TPWIB) +Q,5A, +Q, B, =0,
2
Q31R) + Q358 * Q33 = PW A, + QB =0,
2
0u1Py + QB *+ Quqhy *+ ©, - ree’)B, =0, 3.11)
where
2 2 _ B e g
Q1 = (67 + 20T + ¢, 8, 9, =0y = (By + BN +35 BE,
Q3 =9 = (6, + ¢INE, Q1y= 9y = (58, + B,)ME
13 = 933 2 Y COMNS, Qyg= Yy T\ Pyt By/0s,
= 2 l. 2 = = l )F
Qyp = (Iby +B )T + <b4 *t3 b7)§ ta;, 23%9, (2 By + B 5T,
i 1 SNiEge 2
4%, = (b3+b4 '2‘b7)§n’ a3 = o5 *ogh,
= e 2 s 1 2 2
Q34 = Q3 =3 By + B8, Q4 (b4 19 b7)n thf +a,.  G.12)

Equations (3.11) constitute a system of four linear homogeneous algebraic

: equations in Ay, By, Ay and B,, which yields non~trivial solutions when the

determinant of the coefficients of A A, and B, vanishes, i.e., when

s Py Ay 3




(y - o0’) 2, 93 14
21 Qy, = xPW) 23 ’ 24 =0. (3.13)
231 23, Q33 = P9) "
21 2 %3 Qqq = TPW)

2 : s 2 .
Equation (3.13) is a quartic in w , §2 and nz and, hence, for a given w and §
p 2 A . : :
there are four in general complex 1. Since the solution functions must vanish

as x> ©  only those ﬂ(n) (n=1,2,3,4) with positive imaginary part are
(n)

admissible. For a given T,

three of the four equations in (3.11l) yield
amplitude ratios, which we denote

am) g @) n)

By AT By (3.14)
All four admissible solutions at a given E and w are required in order to
satisfy the four boundary conditions in (3.5). Consequently, we take
4 . (n) :
intx, i(Ex,-wt)
W S T
o L. o
n=1
4 m (1XY .
intix, i(Ex -wt)
wél) = S: C(n)Bc:n)e D SR L (3.15)
n=1
which satisfy (3.5) provided
4
Z c‘“)Lf{“) =0, y=1,2,3,4, (3.16)
n=1
where
1 = (e 20 ™a ™ h @ 48 )1 4 0 v Eal™ v 5 +8 M
L = (8, 481 ™Ma™ k@b 45 1™ 4 8 45, )gA‘“’ub +by) 28"
(n) _ (ny . 1 (n) (n) . (n) (n) (n)
L, c §A +s B4§Bl + c4ﬂ Ay + 3 n g
1
1 =2 8, + @, -3 b)Es™ + 2 8,1 M ‘“’+<b +3 )™M @
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13. ’f
Equations (3.16) constitute four linear homogeneous algebraic equations in

the C(n), and for a non-trivial solution the determinant of the coefficients

must vanish, i.e.,

L{l) L](.2) L{B) L{4)
Lél) Léz) L§3) L£4) =0. (3.18)
L;l) L;Z) L3(3) L§4)
L;l) L;2) L;3) Lé4)

If the constants are known, a calculation proceeds by selecting values

) vom 13,137 anl

for § and w, which enables the determination of the four T
the attendant amplitude ratios from (3.11)., Then everything in (3.18) is known
and either it is satisfied or it is not. If (3.18) is not satisfied, change
either § or w and repeat the entire calculation until (3.18) is satisfied.
Experience with surface waves indicates that there will be one w at a given £
that satisfies all conditions, i.e., (3.13) and (3.18). However, since the
constants are not known for any two-constituent composite material, a calcula-
tion cannot be performed. In the next section calculations are performed for

a highly simplified version of the model for which the constants can be esti-

mated from the known constants of the two constituents in the composite.

4, Surface Waves and the Simplified Model

In this section we simplify the equations for the two~constituent trans-
versely isotropic composite by reducing the model sufficiently that the
material constants of the composite can be estimated from the known constants
of the individual constituents of the composite while still retaining certain
of the essential characteristics of the composite. Since in the simplified

model the constants are essentially known, calculations can be and, indeed,

are performed for surface waves propagating in two-constituent transversely
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isotropic composite materials. The simplified model we are considering is

for a fiber reinforced composite material consisting of an elastic matrix
containing uniformly distributed continuous fibers extending in the x3-direction,
in which the fibers occupy a small fraction of the total composite volume.

On account of the latter condition in the reduced model it is assumed that the
stresses in the matrix are related to the strains in the matrix by the consti-
tutive relations of linear isotropic elasticity and are independent of the
strains in the fibers. Similarly, the stresses in the fibers are assumed to

be independent of the strains in the matrix., It is further assumed that all

(2)

stress components in the long narrow fibers vanish save the axial stress 733 "

which may then be written as a function of the axial strain in the fibers only.
Although this latter assumption seems questionable to us in general we make it

anyway. Then the only interaction between the matrix and the fibers remaining

L.12

is the volumetric interaction term Fy s which from (2.5) and (2.7) takes the

form

Lpl2 o+ nhaw®, W2 i v n7la

(1) S
4 N A w P=12, (4.1)

> 3
At this point it should be noted that the aforementioned assumptions mak=> the

reduced model for the linear case identical with that of Martin, Bedford and

4
Stern .

On account of the assumptions made in the simplified model of the two-
constituent composite, it is advantageous to write the equations in terms of
the infinitesimal displacement fields of each constituent instead of the
center of mass and relative displacement fields. To this end we write6

u}((1) wl((2)

+wg),ug)=u +

X , 4.2)

Ly

which with the three -dimensional version of (2.17)
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O S

= K ; (4.3)
enables us to write
1 (1+r)-l (rul((l) o u1(<2)) 5 w1(<1) = (1+r)-l (uél) —uéz)) . (4.4)
From (2.6)l and (2.20) we obtain
@y _ -1 ) _ -1 i
Toyw = Q*) "GN +.BLM) y Toy = (1+1) (KLM .BLM) . (4.5)

Substituting from (4.4) into the constitutive equations for the two-constituent
isotropic composite7 and then into (4.5), and introducing the aforementioned
assumptions of independence of the stress in the matrix continuum on the strain
in the fiber continuum and vice-versa, which introduces relations among the
more generally defined material constants, and the further assumption of uni-
axial stress in the fiber continuum, we obtain

L u(l)

LM K, K'LM ® on* Yt
(2) (2)_ (2)
= o)
L el o
l(l) (1) . " : (2}
where and U are the Lame constants of the matrix continuum and E is

Young's modulus for the fiber continuum, which are related to the respective

constants in the matrix and fibers by

L (1) ) S

=", p® = ™"n, 2@ < gfafsa, (4.7)
Since the fiber reinforcement in this simplified model is restricted to occupy
a small fraction of the total composite volume, (4.7) enables us to write

A o X, w = w, @ = EfNSf. (4.8)

where Sf is the cross-sectional area of each fiber and N is the number of

fibers per unit area. 1In order to complete the constitutive equations for the

reduced model we substitute from (4.4) into (4.1) to obtain
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LA = ) (3] Ld2 _ o~ . 1) _{2)
B al(uP u ), Fy =-a,(u, u, ), (4.9)
where
~ - S 2
a, = al/(l + )", a, = az/(l + EY . (4.10)

The stress and relative stress equations of motion in the absence of
body and relative body forces take the respective forms

e - wntt i)
KLM,L = pliy, ﬁLM,L E =gl (4.11)

which with (2.6), (2.7), (2.20) and (4.4) enables us to write

@) . niz _ . @3).0)
Tt By 0, (4.12)
[+ 3 S+ SR
Ty~ Tu =P Gy (4.13)

the latter of which, on account of the assumption of uniaxial stress in the

fibers yields
(2) 5 g2 p(2){1-(2)

733,3 o . (4.14)

w~ Fu M

Substituting from (4.6) and (4.9) into (4.12) and (4.14) and employing (4.8),

we obtain
A"+ u™ ué};L * umuL’KK al(uéz) - él))
+ @y -Fpat? - oathe oMM (4.15)
E(z)u;?;36L3+3l(uI§1)-uI('z)) + @,-3) (urfl)—ulfz)){sL3 = p(z)&‘éz), (4.16)

which are the displacement equations of motion of this highly simplified model
of the two-constituent composite material. Equations (4.15) and (4.16) are
identical with the equations of Martin, Bedford and Stern4, who have provided

an approximate procedure for estimating the constant 32 in terms of the known

constants of the individual constituents in the compcsite and the geometry.




e A————

17

Their analysis provides the result

z 22
(H’m/hz) (1 - 8 /h") (4.17)

g
el _ ,
3 logm/s) +3 6°m -2 o't - 312 wmuha - 23
where
2 =~ 2
w2 = ¢3/2ms® (4.18)

and § is the fiber radius, h is the radius of a cylinder, each of which encloses
a single fiber in the hexagonal array and abuts all adjacent cylinders, s is the
fiber spacing and um and uf are the shear moduli of the matrix and fiber
material, respectively. However, the constant 31 still remains undetermined

in this simplified description and it does not appear to be possible to
estimate it in some approximate manner because an appropriate problem yielding
a simple solution of a full linearly elastic boundary value problem cannot be
found. Nevertheless, since we are introducing this highly limited simplified
description in order to cobtain some numerical results, we take the rather
arbitrary course of assuming that 3, = a.. Under these circumstances all

1 2

material constants in the equations are known and calculations can readily be

performed.

As in the case of the more general model, in the consideration of straight-

crested surface waves propagating in the direction of the fiber reinforcement

(x3-direction), the solution functions are independent of x2 and uél) and uéz)

vanish. Under these circumstances we have the differential equations (4.15)

and (4.16), with xz-independence understood and uél) = uéZ) = 0, along with

the non-trivial boundary conditions

(1D SRR 7 ) SRR o) ISR ) -
Ty ™ Ty =Ty =T =0, s x =0, (4.19)

Since T{i) and T{i) vanish identically in the simplified model, we have only

the two non-trivial boundary conditions




i
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5 TR 1 e
Tag (™ Ty ™ Q. at x, = 0, (4.20)

It is our belief that the foregoing is essentially the reason that the surface
wave solutions in the simplified model yield upper (optical type) surface wave
branches, which we feel will not be in conformity with results that would be
obtained from the more general model,

As a solution of the differential equations we take

1) i(ﬂx1+§x3-wt) 2) i(ﬂxl+§x3-wt)
ua =Aae 4 uo( -'=B°[e , =13, (4.21)
which satisfies (4.15) and (4.16) provided
(29 15 M #
(Byg = F WIR - &8 FB A =0,
~ 2y 2
=k, * (al-p()w)Bl=0,
(1) ,2 g =
i T R W Sl
-Fp, 4 (e, - 0P, =0, (4.22)
where
2 2, ~ 2
Py = AT+ u™n® 4 uTgt4E g = py = T 4 0TINE,
P33=+uﬂ + (A +2mE +a,, P44=E()§ +a,. (4.23)

Equations (4.22) constitute a system of linear, homogeneous algebraic equations
in Al. Bl’ A3 and B3. which yields non-trivial solutions when the determinant
B, and B

of the coefficients of A, A vanishes, i.e., when

A g AR | 3




X9,

Py~ o (1)y? "'1 Pa 0
- El 31 p(z)w2 0 0
-2 5 5, - p'Mly? £ =0.  (4.24)
0 0 - '52 sy o )42

; : S 2 Nieser o Lo 2
Equation (4.24) is quadratic in 77, cubic in §2 and quartic in w, and, hence,

for a given w and § there are two in general complex ﬂz. Since the solution

(n)

functions must vanish as x, — «, only those T (n=1,2) with positive

1
(n)

imaginary part are admissible, For a given T] three of the four equations

in (4.22) yield amplitude ratios, which we denote

(n) (n) _(n) (n)
Al s Bl s A3 : B3 ¥ (4. 25)

Since only two non-trivial boundary conditions remain in (4.20), the two

admissible solutions are adequate and we take

2 MM e -ar)
a1 L N L ) g
o 748 o 2
n=1
2 (n) i
] i(Ex -wt)
u(z) = }_ C(n)B(n)e 1 e 3 (4.26)
b n=1 2 ;

which satisfy (4.20) provided

10

(n)

2
%
L

n=

c™pn® o™ + a™a™ 4 "™y - o

b

=]
]
-

¢ ™ 4 Lty S SR @.27)
1
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At this point it should be noted that on account of the simplified model
Egs. (4.27) do not contain the B;n). Equations (4.27) constitute two linear
homogeneous algebraic equations in C(l) and C(Z), and for a non-trivial solu-
tion the determinant of the coefficients must vanish, i.e.,
A"+ 2™ N Ha 0 4 \Tga ) A"+ 22N @2 ) 4 \"ea )
=0, (4.28)
(1) 1) (1) (2) (2)_ (2)
gAl + 7 A3 §Al + N A3

Equation (4.28) is a complex algebraic equation, both the real and imaginary
parts of which must vanish simultaneously. Solutions, i.e., values of ®
and § satisfying (4.24) and (4.28) are found numerically in a manner similar
to that discussed in the paragraph following Eq. (3.18).

Calculations have been performed for a set of material parameters cor-
responding to a glass fiber reinforced phenolic resin4, the relevant constants

of which are

o™ = 0.00013 1b-sec?/in® ef = 12.4 x 16® 1p/in?,
pf = 0.00026 1b—sec2/in4, uf = 10.2 X 10° lb/inz,
2™« 0,85 % 10° 1b/in” o™ = 0,37 % 16° it (4.29)

for a fiber diameter of .0l in. for the volume percentage of reinforcement of
5.67%, which corresponds to s = .04 inches. The results of the calculations
are plotted in Fig.4, which indicates the existence of an upper (optical
type) surface wave branch in addition to the lower (acoustic type) branch.
As already noted, we do not believe that the upper surface wave branch
actually exists, but that its existence is a consequence of the reduced

coupling in the simplified model. A similar analysis has been performed for

straight-crested surface waves propagating normal to the direction of the




.
e -

2 )

fiber reinforcement and the results of calculations based on this analysis
are plotted in Fig.5. Again the results indicate the existence of an upper
as well as a lower branch and we do not believe that the upper branch
actually exists for the aforementioned reasons. In Figs.4 and 5 we have
drawn vertical lines which correspond to a wavelength five times the spacing
of ﬁhe fiber reinforcement. We do not believe the curves to be valid much
beyond these vertical lines because of the nature of the model of the com-
posite we have employed, and we draw them considerably beyond their range

of validity simply to indicate the calculated behavior. The important curves
in Figs.4 and 5 are the lower acoustic type branches, both of which are
drawn to a larger scale in Fig.6. Note the difference in dispersion for the
two directions of propagation considered. This very precise dispersion property
of surface waves could well be used as a means of nondestructively evaluating
the distribution of the fiber reinforcement in and the integrity of the

bonding to the matrix.
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APPENDIX

In this Appendix we present the solution to the second problem treated

in Sec.2, i.e., the one associated with Fig.2, using the reduced equations

presented in Sec.4 and omitting the influsnce of gravity. In this case the

differential equations (4.15) and (4.16) with L = 3 and the constitutive

eguations (4.6) with L = M = 3 and (4.9)2, all in the absence of any x,-,

x2-dependence and inertial terms respectively replace Egs. (2.12), (2.13),

(2.2) and (2.4). Equations (2.27), (2.28), (2.30) and (2.32) remain unchanged

and (2.26) and (2,.29) are replaced by

(1) (2) (1)
uy =u; ', U =U; at x, = @ (Al)
1) (2) _ m =
Tay  * T3z = T33 ; at Xy = Q' (A2)

The solution functions given in (2.14) and (2.33) are replaced by

X
ox 0'3

(Al 1L 3 =
u3 = C1 + C2x3 + C3e + C4e 5 U3 = C5 + C6x3,
1\
ax -orx i
@2y [ 2 (A‘“+zu’“)] 3 3 !
Uy Cl + sz3 £ L = ~——:7————-(C3e + Cye 25, (a3) 4
T E
where é
o= [3,0" + ™ w29 mEr P o By, (a4) i
[
Substituting from (A3) into (Al), (A2), (2.30) and (2.32), we obtain E
%
p b -p P it
LT w2 T %R 3= Tooanat ¢ i
A +2um o cosh & £
-p B p_b P
C4 g co;; al ’ cS =T % m ’ C6 T m = m o
A+ 2u A+
where
B=1/a0™ + ™+ @), (86)




TheactualstressesT§3in the fibers and 723

given by £

T =

AL Zum + B cosh af _

(oiat/m) 0"+ 24™) o
(2) [l ~ cosh az]’

e ep

£ £ 2 £ £
p, = PR, E()=EA/A,

P bul m
i o = [E(Z) + A+ 2u 1 ,

in the matrix at the junction are

(A8)

and pz denotes the actual stress in the fibers before they enter the matrix.
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FIGURE CAPTIONS

Schematic Diagram of Loaded Fiber Reinforced Composite
Supported on a Rigid Base

Schematic Diagram of Loaded Fiber Reinforced Composite with
Reinforcement Terminating Uniformly in Matrix Some Distance
Before Support

Schematic Diagram Showing Surface Wave Propagating A.iong
a Free Surface of a Fiber Reinforced Composite and the
Associated Coordinate System

Dispersion Curves for Surface Waves Propagating in the
Direction of the Fiber Reinforcement

Dispersion Curves for Surface Waves Propagating Normal
to the Direction of the Fiber Reinforcement

Acoustic Type Dispersion Curves for Surface Waves
Propagating Both in and Normal to the Direction of the
Fiber Reinforcement
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